A COUPLED MODEL BASED SYSTEMS ENGINEERING AND MULTI-CRITERIA DECISION MAKING APPROACH TO DEFINE AFFORDABLE REQUIREMENTS

Johanna Ceisel Patrick Koch Alex Van Der Velden Dassault Systemes Americas, USA

ABSTRACT

Programs have traditionally defined system requirements based on mission requirements and former system characteristics with limited knowledge on how their decisions impact the overall design space. This paper describes a methodology that combines model based systems engineering (MBSE) and multi-criteria decision-making (MCDM) to define affordable requirements prior to the design cycle. Two unmanned aerial vehicle (UAV) concepts were modeled in a multi-disciplinary simulation process environment using SIMULIA's Process Composer application. Then the results were loaded into SIMULIA's Results Analytics application, an advanced analytics and decision support tool, for performance versus affordability requirement trade-off analysis. Results Analytics is able to uncover data patterns, show design space sensitivity to requirements, and explicitly prioritize and quantify requirements employing a design ranking algorithm.

INTRODUCTION

The days of performance at any cost are over for the defense industry due to the economic downturn and public policy. Yet, threats are still eminent. Programs must now do more with less. The affordability challenge is further exasperated by shifting mission requirements and an increasing trend in system complexity, which results into longer lead times and cost overruns. Model Based Systems Engineering (MBSE) is a key enabler to overcome these challenges. However, ultimately requirements will lead the system engineer to a region of a design space, which may or may not be preferred by the program. MBSE and MultiCriteria Decision Making (MCDM) need to be coupled and incorporated into the requirements definition stage in order to provide a ranking algorithm to represent the voice of the customer, which is based on knowledge of the design space.

METHODOLOGY

The process of ranking alternatives falls under the research field of Multi-Criteria Decision Making since in a majority of cases multiple conflicting objectives are present in a design problem and a compromise between various objectives is required. For example, the speed and maneuverability is normally in direct opposition to the survivability of the system. The difficulty of the problem is always increased by the presence of more than one criterion. "There is no longer a single optimal solution to an MCDM problem that can be obtained without incorporating preference information. The concept of a single optimal solution is replaced by the set of non-dominated solutions where it is not possible to move away from such solution to any other without sacrificing in at least one criterion. Generally, however, the set of non-dominated solutions is too large to be presented to the decision maker for his or her final choice." [7] A tool is needed to help the decision maker focus on his preferred solutions by applying preferences (priority and weight) and allowing the user to observe how the preferences affect the ranking of the design alternatives in addition to feasibility assessment (e.g. requirement trade-off analysis). [8] Once preferences are determined, a ranking algorithm is created. The design ranking algorithm is just an aggregation function, such as a weighted sum, with the user's hierarchy, weights/preferences, objectives, and thresholds taken into account. Although simple in concept, this is the critical link between requirement definition and model based systems engineering that was missing in the past. The ranking algorithm represents the customer as system engineering trades are being made. The systems models represent the design space to the decision

maker. MBSE coupled with MCDM now gives decision makers the ability to rigorously assess large space of design alternatives. Inspired through work on the DARPA Adaptive Vehicle Make (AVM) Fast Adaptive Next-Generation (FANG) program, the above methodology is achieved through the following four basic steps:

- A. Define preliminary requirement hierarchy, priority, objectives, and thresholds
- B. In parallel, generate design alternatives based on a model based systems engineering library
- C. Load generated alternatives and conduct requirement trade-off analysis
- D. Based on the requirement trade-off analysis, finalize and share design ranking algorithm

These steps are illustrated in Figure 1 below.

UNMANNED AERIAL VEHICLE USE CASE

In order to illustrate the methodology, an unmanned aerial vehicle (UAV) use case was selected. Aluminum machined and composite Resin Transfer Molding (RTM) concepts were modeled at the conceptual level. Both concepts have an axisymmetric fuselage with integrally hoop stiffening.

Figure 1: Methodology

A Coupled Model Based Systems Engineering and Multi-Criteria Decision Making Approach to Define Affordable Requirements

Figure 2: UAV Conceptual Design

For the requirement definition and tradeoff analysis, SIMULIA's Results Analytics was used. Results Analytics is a web based, trade-off and decision support tool on the

3DExperience platform, which enables users to transform scientific data into decisions. 3DExperience is Dassault Systemes' (DS) common platform, where all DS applications share a common data model, lifecycle policy, security controls, and knowledge management system. Results Analytics enables the above methodology through advanced analytics, interactive visualizations, collaborative decision support, and tight integration with simulation and Requirement Central. Requirement Central is a requirements management application on the 3DExperience platform as well. For instance, a user is able to easily manipulate a requirement hierarchy and priority via a mind map view, which in turn updates the ranking algorithm, re-ranks the design alternatives, and assesses feasibility. Users can quickly see how their objective definition and preferences impact the design space.

For alternative generation, SIMULIA's Process Composer was used, which is a multi-disciplinary simulation process environment. Users are able to graphically integrate via drag and drop any application, using "out of the box" interface library of adapters. Adapters are the building blocks of a simulation process and can be either native (CATIA, Abaqus, etc.) and non-native (Excel, Matlab, etc.). Process Composer also features advanced design exploration adapters, of Experiments such as Design (DOE). Optimization, and Surrogate Modeling execution. For this use case, a DOE was used to generate alternatives for both concepts.

Requirement	Units	Objective	Threshold
Customer			
Range	Miles	Maximize	>400
Endurance	Hrs	Maximize	>3
Payload Volume	Inches^3	Maximize	>=600
Total Cost Per Unit	\$USD	Minimize	
Engineering			
Empty Weight	lb	Minimize	
Manufacturing			
Production Hours per Unit	Hours	Minimize	

Preliminary Requirements Definition

Illustrative preliminary requirements were defined and organized by three stakeholders (customer, engineering, and manufacturing), which is shown in Table 1. The preliminary requirements were then loaded into ENOVIA's Requirements Central and then imported into Results Analytics. Using the Mind Map view, users are able to quickly change the requirement priority and hierarchy via drag and drop, which also transforms the ranking algorithm. Based on this requirement hierarchy, scores and weights are aggregated accordingly, so this is an important first step to generating the ranking algorithm. For this example, the hierarchy is only two levels deep with customer, engineering, and manufacturing representing the first level. Range, Endurance, etc. compose the second level under customer and so on. Figure 3 shows the Mind Map view. In the FANG program, the requirements were much more complex; over 100 requirements and five levels deep with performance, cost, and time

Figure 3: Results Analytics Mind Map View

A Coupled Model Based Systems Engineering and Multi-Criteria Decision Making Approach to Define Affordable Requirements

representing the first layer; speed, survivability, maneuverability, etc. in the second layer under performance and so on. Requirements can quickly become difficult to manage. The Mind Map view aids users to quickly generate the hierarchy and in turn the ranking algorithm. In another view, users are able to enter upper/lower thresholds and objectives. Objectives can be defined as either continuous (maximize, minimize) or targeted (target). The thresholds and objectives were entered as shown in Table 1.

Alternative Generation

In parallel, a simulation process was created in Process Composer, representing three disciplines: Design, Performance, and Manufacturing. The simulation process encompasses three activities with adapters within each activity. The first activity is the parametric, conceptual fuselage created in CATIA, which calculates empty weight and volume. The calculator adapters within this activity are used for unit conversions, while the CATIA adapter accesses the conceptual model the 3DExperience platform within for perturbation. The second activity calculates range and endurance based on Breguet's equations. The third activity calculates production hours and cost using weight based surrogates fitted from data generated from Galorath's SEER-H total lifecycle cost modeling application. The cost and hour estimating relationships are based on weight, manufacturing process, material, and complexity based on aerospace UAV structures. The simulation process is shown below in Figure 4. A Latin Hypercube DOE was run for each concept.

Length, Diameter, and Thickness were varied per concept per DOE. For this use case, all three activities were run on the same workstation. However, Process Composer gives the user the ability to assign compute stations or affinity groups for each activity, which then calls SIMULIA's Compute Orchestration Services (COS). COS is an intelligent execution engine that automatically governs the distribution of simulation processes across a network of computers, on-premise or on-cloud.

Requirement Trade-off Analysis

After both DOEs are run, the result files are seamlessly loaded and merged from Process Composer to Results Analytics for trade-off analysis. This step is the heart of the methodology, where decision makers can perform what-if requirement trade-off analysis and understand the impact of their decisions on the Based on the preliminary design space. requirements defined earlier, loaded designs from the result files are automatically scored, ranked, and assessed for feasibility. Feasibility indicates the capability of a design to meet a set of requirements. In Results Analytics, designs are assessed and placed in three categories:

- Infeasible Does not meet one or more requirement thresholds
- Dominated Meets thresholds, but better designs exist
- Best Design or Pareto Meets thresholds and non-dominated design

A Coupled Model Based Systems Engineering and Multi-Criteria Decision Making Approach to Define Affordable Requirements

In the UAV use case, 3101 out of 3900 designs are marked infeasible. Figure 5 shows the Table View with feasibility assessment shown by color in each row (Green-Pareto, White-Dominated, Red-Infeasible). The parameters that are violating a threshold and causing infeasibility are marked in bold font. In this case, range is causing the top ranking designs (see below) to be infeasible. A decision maker can now easily see how their threshold definition affects the design space and assess if it is truly an important constraint. Not all thresholds are important. Sometimes thresholds are based on previous platform capabilities versus the actual need, such as mission or threat. There are other times where the design space, especially at the system level, is over constrained by thresholds (e.g. all design points are marked as infeasible) and decision makers need to reevaluate before a proposal is issued. In this case, range was relaxed to 300 in order to open up the design space.

Image Image <th< th=""><th>SkinThickness</th><th>20</th><th>Rank 🔺</th><th>Design #</th><th>Overall Score</th><th>Manuf Type</th><th>Length</th></th<>	SkinThickness	20	Rank 🔺	Design #	Overall Score	Manuf Type	Length
0.00004 0.1124F Endurance 3 0.00004 0.1124F Endurance 4 0.00004 0.0124F 0.00004F 0.00004F 0.00004F 0.00004F 0.00004F		<u>45</u>	1	1958	71.182	Composite RTM	59
0.02024 0.1244 Endurance 4 Endurance 4 1 5 2 103 4 2007 9 9833 4 2007 5 3 6 2133 6 2133 6 2133 6 2133 6 2133 6 2133 6 2133 6 2133 7 7 9 9 11 155 11 155 11 155 11 155 11 155 11 155 11 155 11 155 11 155 11 155 12 161 13 167 14 160 15 512 168 9556 <td></td> <td>ŏ</td> <td>2</td> <td>2056</td> <td>70.775</td> <td>Composite RTM</td> <td>58</td>		ŏ	2	2056	70.775	Composite RTM	58
Concern Concern P1933 Advances Endurance 5 3670 91933 Advances Concern 6 2133 66.85 Composite R1N Concern 8 2283 96.85 Composite R1N Concern 8 2283 96.05 Composite R1N Concern 110 135 67.03 Composite R1N Concern 111 1356 67.03 Composite R1N Concern 111 1356 68.25 Composite R1N Concern 111 1356 68.25 Composite R1N Concern 111 136 68.25 Composite R1N Concern 111 136 68.25 Composite R1N Concern 111 136 68.45 Composite R1N <td>010024 0.12499</td> <td></td> <td>3</td> <td>1633</td> <td>70.575</td> <td>Composite RTM</td> <td>59</td>	010024 0.12499		3	1633	70.575	Composite RTM	59
Endurance 5 3870 1000 Aumount Machined 6 2130 668.06 Camposite RTM 6 2230 668.06 Camposite RTM 6 223 668.06 Camposite RTM 6 161 67.64 Camposite RTM 6 161 67.64 Camposite RTM 6 161 67.64 Camposite RTM 1 1 1326 67.830 Camposite RTM 1 1 1326 67.831 Camposite RTM 1 1 1326 67.831 Camposite RTM 1 1 1426 67.841 Camposite RTM 1 1 1426 67.851 Camposite RTM 1 1 1446 145 1450 Camposite RTM 1 1 1446 1450 Camposite RTM 1 1 144		Ŏ	4	3507	99.933	Aluminum Machined	57.
Character RTM Composite RTM Composi	ad using a		5	3670	100.0	Aluminum Machined	59
1000 7 1302 68.0.40 Composite RTM 1000 9 1413 67.868 Composite RTM 111 1356 67.300 Composite RTM 112 69.20 Composite RTM Composite RTM 113 160.77 67.182 Composite RTM 114 1030 66.582 Composite RTM 115 51.205 Composite RTM 10 116 168 68.535 Composite RTM 117 149 66.582 Composite RTM 118 61.31 66.562 Composite RTM 119 61.31 66.562 Composite RTM 110		•	6	2193	69.636	Composite RTM	58
B 263 86.000 Auminum Machined Arge 9 191 67.802 Composite RTM Arge 11 135 67.848 Composite RTM 2001 111 1355 67.848 Composite RTM 2001 111 1356 67.848 Composite RTM 2001 111 1356 67.848 Composite RTM 2001 116.4 100 66.528 Composite RTM 111 135 167.7 67.126 Composite RTM 112 100 66.528 Composite RTM 113 167.7 66.926 Composite RTM 116 16 66.926 Composite RTM 117 197 3446 95.681 Auminum Machined 117 197 346 95.696 Auminum Machined 220 133 66.581 Auminum Machined 20 220 1345 95.996 Auminum Machined 20 221 122 <td>Lange and the second seco</td> <td></td> <td>7</td> <td>1302</td> <td>69.616</td> <td>Composite RTM</td> <td>59</td>	Lange and the second seco		7	1302	69.616	Composite RTM	59
9 9 1913 0790 2000 Arge 0 0 621 67.842 Composite RTM Arge 0 10 621 67.843 Composite RTM 11 155 67.303 Composite RTM 0 11 1155 13 1657 67.126 Composite RTM 0 11 115 116 110 111 115 112) · · · · · · · · · · · · · · · · · · ·	0	8	2681	98.080	Aluminum Machined	55.
Stange 0 621 67.64 Composite RTM 2091 11 1555 67.303 Composite RTM 2091 104.4 1091 67.44 Composite RTM 2091 104.4 103 66.65 Composite RTM 2091 104.4 103 66.65 Composite RTM 114 1057 67.12 Composite RTM 115 512 66.925 Composite RTM 116 16 66.925 Composite RTM 117.227 116 3440 95.68 Composite RTM 117.227 118 3440 95.68 Administrical Machined 117.227 119 3440 95.68 Administrical Machined 117.227 123 119 44.77 Composite RTM	3	0	9	1613	67.992	Composite RTM	56
Jange 111 1356 67.303 Composite RTM 22011 1104.4 12 194 67.404 Composite RTM 22011 1104.4 1003 1057 67.126 Composite RTM 114 1003 1057 67.126 Composite RTM 104 115 512 66.222 Composite RTM 104 116 168.2 Composite RTM 104 116 168.2 66.44 Composite RTM 104 116			10	621	67.848	Composite RTM	57
2001 121 1091 67.454 Composite RTM 2001 103 1097 67.126 Composite RTM 2001 104 1091 67.026 Composite RTM 104 105 512 66.62 Composite RTM 115 512 66.62 Composite RTM 116 116 116 66.82 Composite RTM 117200 117 1497 65.98 Composite RTM 117200 118 85.355 Composite RTM 117 117200 118 85.355 Composite RTM 118 117200 118 84.49 84.755 Composite RTM 117200 118 34.49 86.18 Aluminum Matchined 221 3316 94.977 Aluminum Matchined 117 222 103 86.858 Composite RTM 118 223 1192 65.658 Composite RTM 118 224 101 65.658 Composite RTM	Range	Ō	11	1355	67.303	Composite RTM	58
2011 13 167 67.126 Composite RTM 14 1003 66.862 Composite RTM 14 1003 66.862 Composite RTM 117 146.7 65.862 Composite RTM 118 177 164.644 Composite RTM 119 344 96.863 Composite RTM 117 146.77 65.808 Composite RTM 119 344 96.864 Composite RTM 20 3485 95.965 Attminum Machined 210 3485 95.965 Attminum Machined 220 1033 66.569 Composite RTM 221 1033 66.569 Composite RTM 222 1033 66.569 Composite RTM 222 1033 66.569 Composite RTM 223 1633 66.664 Composite RTM 231 64.76 Composite RTM 26 231 246 64.77 Composite RTM 23			12	1091	67.454	Composite RTM	59
20011 164.4 160.3 66.56.2 Composite RTM ind Cost Per Unit 15 512 69.56.2 Composite RTM ind Cost Per Unit 16 169.2 66.56.2 Composite RTM int Cost Per Unit 16 169.2 66.56.2 Composite RTM int Cost Per Unit 17 148.7 65.68.6 Composite RTM int Cost Per Unit 20 348.9 95.65.6 Composite RTM int Cost Per Unit 21 33.6 94.77 Aumnum Machined int Cost Per Unit 22 163.3 65.65.0 Composite RTM int Cost Per Unit 22 163.2 65.65.0 Composite RTM int Cost Per Unit 22 163.2 65.65.0 Composite RTM int Cost Per Unit 22 163.2 65.65.0 Composite RTM int Cost Per Unit 23 162.2 64.97.0 Composite RTM int Cost Per Unit 23 162.2 64.97.0 Composite RTM int Scow 16.7 <) — — — — — — — — — — — — — — — — — — —		13	1067	67.126	Composite RTM	54
idal Cost Per Unit 15 512 66.825 Composite RTM intraction 16 16 66.825 Composite RTM intraction 17 1497 65.886 Composite RTM intraction 18 681 Autimism Machined intraction 19 3480 95.865 Autimism Machined intraction 20 3485 95.865 Autimism Machined intraction 20 3485 95.865 Autimism Machined intraction 221 1033 66.580 Composite RTM intraction 222 1033 66.580 Composite RTM intraction 24 1001 66.580 Composite RTM intraction 24 1001 66.425 Composite RTM intraction 22 3180 92.047 Autimism Machined intraction 22 121 64.876 Composite RTM intraction 23 121 64.876 Composite RTM intract	23011 1104.4		14	1003	66.562	Composite RTM	55
Clail Cost Per Unit 16 162 66.47 Composite RTM 117.20 17 1497 65.88 Composite RTM 117.20 19 3.48 95.985 Automum Machined 20 3.486 95.985 Automum Machined 20 3.486 95.985 Automum Machined 20 3.486 95.985 Composite RTM 20 3.486 95.985 Automum Machined 20 3.486 95.985 Composite RTM 21 3.016 94.77 Automum Machined 22 1672 65.546 Composite RTM 22 1672 65.466 Composite RTM 22 1672 65.466 Composite RTM 22 1672 65.466 Composite RTM 22 1672 65.467 Composite RTM 23 1623 64.675 Composite RTM 24 127 280 64.462 Composite RTM 23 1623 64			15	512	66.925	Composite RTM	58
177 147 65.98 Composite RTM 117,227 181 65.55 Composite RTM 283 3469 95.618 Ademinum Machined 201 316 95.95 Administrational Machined 221 193 3469 95.618 Administrational Machined 223 193 366.59 Composite RTM 223 192 65.36 Composite RTM 223 193 66.58 Composite RTM 224 1001 66.56 Composite RTM 223 193 66.425 Composite RTM 230 192 46.476 Composite RTM 231 225 66.425 Composite RTM 230 192 46.477 Composite RTM 231 2275 91.900 Administriked 232 192.047 Composite RTM 22 233 192 46.457 Composite RTM 233 192 46.458 Composite RTM	fotal Cost Per Unit		16	1692	66.547	Composite RTM	59
Image: Second			17	1467	65.988	Composite RTM	59
117/20 16 3440 96.618 Auminum Machined Production Hours Per Lint 20 3456 95.956 Auminum Machined 202 323 16 94.317 Aluminum Machined 203 3316 94.317 Aluminum Machined 213 3316 94.317 Aluminum Machined 223 1123 65.85 Composite RTM 223 1212 65.346 Composite RTM 224 1001 65.65 Composite RTM 24 1001 65.65 Composite RTM 25 16.93 64.676 Composite RTM 26 224 3150 22.447 Aluminum Machined 23 1121 64.546 Composite RTM 23 1212 61.647 Composite RTM 23 1212 64.647 Composite RTM 23 1212 64.647 Composite RTM 23 1212 656 63.07 24 121 64.6	1÷	•	18	881	65.535	Composite RTM	52
20 3485 95966 Aumnum Machined 21 3316 95797 Aumnum Machined 22 1033 66859 Composite RTM 22 1033 66859 Composite RTM 22 1033 66859 Composite RTM 22 1031 6477 Composite RTM 23 121 65456 Composite RTM 24 1011 65659 Composite RTM 25 1231 64766 Composite RTM 26 2311 64766 Composite RTM 28 2466 64777 Composite RTM 29 3150 122.446.61 Composite RTM 29 3150 122.446.61 Composite RTM 29 3150 122.466.64.77 Aumnum Machined 30 121 46.451 Composite RTM 29 3150 122.46.64.11 Composite RTM 30 121 46.51.01 Composite RTM 31 126.76	117320	0	19	3449	95.618	Aluminum Machined	55
Veduction Hours Per Unit 21 33.16 94.77 Aummun Machined 40.04 22 1072 65.34 Composite RTM 40.04 22 1072 65.34 Composite RTM 40.04 24 1011 65.65 Composite RTM 22 10672 65.346 Composite RTM 24 1011 65.65 Composite RTM 25 16.83 64.676 Composite RTM 26 277 2260 64.425 Composite RTM 28 246 256 164.87 Composite RTM 23 3150 92.247 Autimum Machined 23 3150 92.247 Autimum Machined 23 3150 92.247 Autimum Machined 32 1621 86.451 Composite RTM 33 1681 85.108 Composite RTM 33 1681 65.108 Composite RTM 33 1681 65.108 Composite RTM 33 <td></td> <td></td> <td>20</td> <td>3485</td> <td>95.965</td> <td>Aluminum Machined</td> <td>53</td>			20	3485	95.965	Aluminum Machined	53
41.04 2 1033 65.69 Composite RTM 451.04 22 1033 65.69 Composite RTM 451.04 22 1033 65.69 Composite RTM 461.04 24 1001 65.66 Composite RTM 461.04 24 1001 65.66 Composite RTM 461.04 24 1001 66.66 Composite RTM 461.04 24 25 1939 66.66 Composite RTM 461.04 27 256 64.25 Composite RTM 28 2406 64.77 Composite RTM 47 28 2406 64.77 Composite RTM 29 39 121 64.61 Composite RTM 48 29 3150 92.047 Auminum Machined 30 121 64.61 Composite RTM 48 29 3150 92.047 Auminum Machined 32 156 63.77 Composite RTM 33 161 65.108 Composite RTM 33<	Production Hours Per Unit		21	3316	94.717	Aluminum Machined	59
400 22 1972 65.34 Composite RTM 4010 65.64 Composite RTM 22 1972 65.34 Composite RTM 4010 65.64 Composite RTM 22 1972 226 Composite RTM 4010 65.64 Composite RTM 22 23 23 23 23 23 23 23 24 23 22 24 22 23 23 23 23 24 24 23 24 24 23 24 24 23 24 24 24 24 24 24 24 24 24 24	•	0	22	1033	65.859	Composite RTM	58
461.0% 24 1011 66.65 Composite RTM wordl Score 25 1693 64.66 Composite RTM Bottom 75% (2025) har 23% (780) Tap 5% (1955) 28 2456 64.27 Composite RTM 28 2456 64.477 Composite RTM 28 2466 64.777 Composite RTM 29 3150 29 3150 22.044 Attimum Machined 30 162.14 Composite RTM 29 3150 29 3150 22.047 Attimum Machined 30 162.14 46.476 Composite RTM 29 3150 29 3150 22.047 Attimum Machined 30 162.14 46.161 Composite RTM 20 315 22.75 91.500 Attimum Machined 33 168.16 Composite RTM 20 31 163.16 65.108 Composite RTM 33 168.16 Composite RTM			23	1872	65.346	Composite RTM	55
var.dl Score 25 1633 64.66 Composite RTM var.dl Score Bottom 75% (225) New 23% (780) Tap 5% (155) 26 2231 64.97 Composite RTM var.dl Score Bottom 75% (155) Tap 5% (155) 28 246 64.77 Composite RTM var.dl Score 28 3246 64.77 Composite RTM var.dl Score 28 3260 64.77 Composite RTM var.dl Score 29 3350 92.047 Autminum Machined var.dl Score 29 310 122.1 64.611 Composite RTM var.dl Score 29 313 27.55 63.90 Composite RTM var.dl Score 29 313 27.55 63.00 Composite RTM var.dl Score 29 33 168 65.108 Composite RTM var.dl Score 33 168 65.108 Composite RTM var.dl Score 33 168 65.108 Composite RTM	661.04		24	1001	65.659	Composite RTM	59
Store Image: 2 minimum		0	25	1693	64.666	Composite RTM	55
Bottom 75% (2925) Next 25% (780) Tap 5% (780) 2 27 2580 66.425 Composite RTM 2 28 2456 64.777 Camposite RTM 2 3150 92.047 Auminum Machined 30 1621 64.511 Composite RTM 2 310 1621 64.511 Composite RTM 2 313 1656 65.776 Composite RTM 2 31 2675 91.500 Auminum Machined 2 32 1650 65.776 Composite RTM 33 168 65.108 Composite RTM 33 168 65.108 Composite RTM	verall Score 🖬 ? 🔺		26	2381	64.976	Composite RTM	52
Heat 23% (780) 28 240 6.477 Composite RTM Top 5% (195) 29 315 92.047 Aumnum Machined Sasbility 7 30 1821 64.511 Composite RTM Best Designs (6) @Infrastible (3103) 32 185.06 65.08 Composite RTM Dommitted (191) Excluded (0) 33 168.18 65.08 Composite RTM	Bottom 75% (2925)		27	2560	66.425	Composite RTM	59
Top 5% (15%) 28 3150 82.647 Aummun Machines ass.bity 2.1 46.511 Compose RTM ass.bity 2.1 46.511 Compose RTM Bast Designs (6) Winnasble (3103) 33 1681 65.108 Downstate (179) Excluded (0) 33 1681 65.108	Next 20% (780)		28	2456	64.777	Composite RTM	51
30 1621 6 4.511 Composite RTM ass.bit/y 2 31 2675 91 500 Aluminum Machined Best Designs (6) Winteasthe (150) 33 168 65 108 Composite RTM Bottomated (151) Excluded (0) 33 168 65 108 Composite RTM	() Top 5% (195)		29	3150	92.047	Aluminum Machined	51
Bastbildy P 21 2075 91300 Aluminum Machined Best Designs 21 2075 91300 Aluminum Machined Best Designs 21 2050 83700 Compose RTM Decomplex (191) Excluded (0) 33 1681 65.108 Compose RTM Decomplex (191) Excluded (0) 34 1810 0.01964 Aumonsm Machined			30	1821	64.511	Composite RTM	54
Best Designs (6) @Infeasible (3103) 32 1650 63.978 Composite RTM Dominated (791) Excluded (0) 33 1681 65.108 Composite RTM	easibility 🔋 🔺		31	2675	91.900	Aluminum Machined	54.
Commission (Commission (Composite RTM Composite RTM Composite RTM Composite RTM Composite RTM Composite RTM Composite RTM	Best Designs (6) Infessible (3103)		32	1650	63.978	Composite RTM	58
34 3399 90 599 Aluminum Machined	Dominated (791) Excluded (0)		33	1861	65.108	Composite RTM	57.
		0	34	3399	90.599	Aluminum Machined	48.
ata Sources 35 1879 64.373 Composite RTM	ata Sources 🔄		35	1879	64.373	Composite RTM	57

Figure 5: Table View with Feasibility Assessment

In addition to feasibility assessment, the designs are also being scored and ranked based on the weighted sum ranking method. Weighted sum is the simplest and most recognized MCDM ranking In Results Analytics, weighted sum method. method is selected by default. The score value of each design point is simply a sum of all objective values, each multiplied by the final, aggregated weight factor (based on hierarchy). For the weighted sum method to be valid all objectives must be normalized and brought into the same which Results Analytics range, does automatically, otherwise effects of different objective functions will not be equally represented. Users can also choose Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) ranking method. TOPSIS is a MCDM ranking method that employs the concepts of the positive ideal point (best objective values for all criteria) and the negative ideal point (worst objective values in all criteria) in the objective domain. Design alternatives are ranked based on the shortest geometric distance from the positive ideal point and the longest geometric distance from the negative ideal point in terms of the objective values. [8] In general, TOPSIS will rank a balanced solution higher, even if the design is dominated, while Weighted Sum will rank a cutting edge or non-dominated solution higher. Both ranking methods are provided to accommodate the decision maker's profile. There are many types of MCDM methods, such as additive shortfall and multiplicative. Results Analytics currently only has the top requested, two options. Eventually, users will be able to enter their own MCDM method into the app. In this use case, the ranking method was changed to TOPSIS, since most military programs prefer a more balanced solution to requirements to perform the mission. Concepts that are more balanced now rank higher. The feasibility is reassessed and good as well.

A Coupled Model Based Systems Engineering and Multi-Criteria Decision Making Approach to Define Affordable Requirements

Finally, weight trade-offs can be performed. Since explicitly weighting a requirement is very difficult for a user, priorities are assigned categorically by the user (e.g. MH-Must Have, Priority 1 – Most Important to Priority 5 – Least Important) and automatically translated into weights by Results Analytics in the preliminary requirement definition phase. However, this is intended to only serve as starting point for scoring and ranking. Users at this point can conduct whatif weighting scenarios to capture their true preferences by changing the weights via the slider bars and seeing the effect on the design ranking. Figure 6 shows the Collaborate view, which displays the weight slider bars and rank with score breakdown bar chart. For example in the UAV use case, all the designs meet performance (range and endurance) thresholds, so the weighting on these requirements can be reduced and other criteria, such as affordability (cost) increased. By increasing the weight on cost, more affordable concepts are ranked higher, while meeting performance requirements. In the future, more advanced methods, such as Analytic Hierarchy Process (AHP) coupled with multi-viewing and online voting will be used to elicit preferences from stakeholders as well.

Figure 6: Collaborate View

Users can continue to perform what-if scenarios by iterating upon the hierarchy, thresholds, objectives, ranking method, and weights until the design ranking reflects their true intended desire or outcome for the program. They can also insert benchmarks as points of comparison. Once finalized, all of the ranking components can be captured and shared in the form of a ranking algorithm.

Ranking Algorithm

Sharing a ranking algorithm as part of the request for proposal (RFP) process versus just a set of requirements, allows the program to better represent their preferences versus leaving it open to system integrator's interpretation. It also enables OEMS to focus on more high value, innovative activities, such as finding optimal designs and gaps in technology for investment or It also gives the program a partnership. transparent and defensible tool to justify award decisions. The FANG program was a good use case, where the requirements were heavily weighted towards manufacturability versus performance. The contestants that understood this ended up winning a million dollars. The downside is the ranking algorithm must reflect what the program wants. [10] Otherwise, OEMs could contest award decisions. One way to mitigate this would be to evaluate and monitor designs throughout the design cycle and update the ranking algorithm as necessary to ensure the desired outcome.

CONCLUSION

In conclusion, model based systems engineering needs to be coupled with multi-criteria decisionmaking in order to create a ranking algorithm to accurately represent the voice of the customer to systems engineers. The benefits of this approach is explicit representation of requirements, rigorous assessment of large design spaces, and improved, rational decisions that are transparent, traceable, and defensible. In turn, these capabilities will accelerate innovative design, while reducing cost. Further areas of research include preference elicitation, risk assessment, and technology portfolio insertion.

A Coupled Model Based Systems Engineering and Multi-Criteria Decision Making Approach to Define Affordable Requirements

REFERENCES

- [1] R. Austin, "Unmanned Aircraft Systems: UAVS Design, Development, and Deployment", Wiley, John, Sons, Incorporated, 2010.
- [2]R. Curran, M. Gilmour, C. McAlleenan, and P. Kelly, "Aerospace Product Cost Management at the early concept operations phase", *The 26th Congress of International Council of the Aeronautical Sciences (ICAS)*, Anchorage, Alaska, September 14-19, AIAA Paper No. 2008-094, 2008.
- [3]M. Rais-Rohani and E. B. Dean, "Toward Manufacturing and Cost Considerations in Multi-disciplinary aircraft design, 37th AIAA/ASME/ASCE/AHS/ASC Structures, Dynamics, and Materials Conference and Exhibit, Salt Lake City, UT, April 15-17, 1996.
- [4]D. P. Schrage and D. N. Mavris, "Integrated Product and Process Design (IPPD) through Robust Design Simulation", *The 1st AIAA Aircraft Engineering, Technology and Operations Congress*, Los Angeles, CA, AIAA Paper No. 95-3892, September 19-21, 1995.
- [5]J. Ceisel, P. Witte, T. Carr, S. Pogaru, and D. Mavris, "A Non-Weight Based, Manufacturing Influenced Design (MIND) Methodology for Preliminary Design", 28th International Congress of the Aeronautical Sciences, Brisbane, Australia, September, 2012.

- [6]R. L. Keeney and H. Raiffa, "Decisions with Multiple Objectives: Preferences and Value Tradeoffs", Cambridge University Press, Cambridge, UK, 1993
- [7] M. Koksalan, P. Korhonen, and J. Wallenius, (July 6, 2011), "Multiple-Criteria Decision Analysis", [Online] Available: http://en.wikipedia.org/wiki/Multiplecriteria_decision_analysis
- [8]O. Golovidov, "Self Help Technical Documentation", unpublished.
- [9]G. Jahanshahloo, F. Lotfi, M. Izadikhah, "Extension of the TOPSIS Method for Decision-Making Problems with Fuzzy Data", Applied Mathematics and Computation, 181, 1544-1551, 2006.
- [10] DARPA. "DARPA Announces Winner of the First FANG Challenge". Internet: http://www.darpa.mil/NewsEvents/Releases/20 13/04/22.aspx, April 22, 2013 [July 22, 2014].

A Coupled Model Based Systems Engineering and Multi-Criteria Decision Making Approach to Define Affordable Requirements